Violence Risk Factors Map

A map of neighborhood risk factors for youth and gang violence in San José – Under the hood.
San José Parks, Recreation & Neighborhood Services

April 29, 2019

Table of Contents

Introduction ... 2
Metrics for Youth and Gang Violence ... 3
 Metrics .. 3
Calculations of Metrics, Data, and Sources ... 6
 Example Metric – Presence of Illegal Firearms (or use of) ... 6
 Combining Metrics to get Overall Risk Factor Score ... 9
Metrics displayed on the map ... 10
 A Brief note on Yearly Data .. 10
Scope of Data – Defining a “Neighborhood” ... 13
Predicting Future Risk Factor Scores ... 14
 Prediction Accuracy .. 16
Conclusion, Limitations, and Future Work .. 18
 Next Steps .. 19
 Building On This Work .. 19
Introduction

The Violence Risk Factors Map (aka “Risk Factors Map” and referred to in this document as “The Map”) is an interactive tool which can be found here: http://bit.ly/violence-risk-factors-map. On the map any neighborhood can be clicked on to see its overall Risk Factor Score, along with the factor-specific risk scores. To alter the map and explore only a single, or small set of risk factors, that can be done on the toggle map here: http://bit.ly/custom-violence-risk-factors-map. The map can also include an overlay of schools, city council districts, and the Mayor’s Gang Prevention Task Force (MGPTF) “Hot Spots” by selecting any of the items on the top right (Figure 1). Furthermore, the displayed year can be changed to explore past and present neighborhood risk factors for youth and gang violence (shown by the “Actual” year options below), and future neighborhood risk factors for youth and gang violence (shown by the “Predicted” year options below).

Figure 1: Showing the possible overlays on the map. Here the council district outlines are shown, along with locations of schools and Mayor's Gang Prevention Task Force hot spots.
This report outlines in detail the work done by San José Parks, Recreation & Neighborhood Services (PRNS). Section 2 covers how PRNS chose the metrics to define a neighborhood’s risk for youth and gang violence. Section 3 covers the data elements used for each metric, their sources, and how risk scores are calculated. Section 4 covers the methodology behind predicting future risk scores, and evaluates the predictive model. Section 5 summarizes the report, explains limitations, and suggests avenues for building on this work.

Throughout this work, no individual level data is used. This means it is impossible to identify any individual, family, or group of individuals through this data. All data is tied to the geographic area and nothing else. This accomplishes our goal of better resource allocation without compromising our citizens’ privacy. To see how these algorithms are implemented in our work, check our GitHub files “Building the 1 2 and 3 year prediction models.R” and “Predicting the future.R.”

Metrics for Youth and Gang Violence

The US Department of Justice Office of Juvenile Delinquency and Prevention (OJJDP) offers a comprehensive list of risk factors for youth and gang violence. These risk factors include the presence of youth poverty in the community, child abuse, and other factors enumerated below. One factor which is not from the OJJDP but is included is the presence of graffiti in the neighborhood, which serves as a proxy for some of the OJJDP risk factors associated with a presence of gangs in the community. Ultimately, eleven metrics were used to define the risk for youth and gang violence. Below, each metric is discussed.

Metrics

1) Child Maltreatment

Evidence suggests that children who have been physically abused or neglected are more likely than others to commit violent crimes (Widom, 1989; Zingraff et al., 1993; Smith and Thornberry, 1995). Studies have examined three forms of child maltreatment: physical abuse, sexual abuse, and neglect.

1 https://github.com/gehami/Youth-Needs-Map
2 https://www.ncjrs.gov/pdffiles1/ojjdp/179065.pdf
3 https://www.nationalgangcenter.gov/spt/Risk-Factors/12
4 The World Health Organization, and many academic institutions divide risk factors into five relational categories: individual, family, peer, school, and community. However, all data is recorded at the community level, so we choose to not delineate factors by relational category.
2) Developmental Trauma Exposure

Developmental trauma, such as abandonment, betrayal, physical or sexual assaults or witnessing domestic violence have consistent and predictable consequences that affect many areas of functioning. These children tend to behaviorally reenact their traumas either as perpetrators, in aggressive or sexual acting out against other children, or in frozen avoidance reactions.\(^8\)

3) Exposure to violence and racial prejudice

Exposure to violence in the home and elsewhere increases a child’s risk for involvement in violent behavior later in life (Paschall, 1996)\(^9\). McCord and Ensminger (1995)\(^10\) also found that study participants who reported having experienced racial discrimination committed more violent acts.

4) Community disorganization.

Community disorganization and low neighborhood attachment are predictors of violence. Community disorganization, associated with the presence of crime and poverty, was a better predictor of violence than low attachment to a neighborhood (Maguin et al, 1995)\(^11\).

5) Presence of Illegal Firearms

A prevalence of drugs and firearms in the community predicts greater variety in violent behaviors at age 18 (Maguin et al., 1995).\(^12\) Furthermore, an availability of illegal firearms, both for adults and children, is associated with higher gang involvement.\(^13\)

6) School Violence and Academic Failure

Poor academic achievement has consistently predicted later delinquency (Maguin and Loeber, 1996;\(^14\) Denno, 1990).\(^15\) Farrington (1989) found that boys who at age 11 attended schools with high violence reported more violent behavior than other youth.\(^16\)

\(^{8}\) Van der Kolk, Bessel A. "Developmental Trauma Disorder: Toward a rational diagnosis for children with complex trauma histories." Psychiatric annals35.5 (2017): 401-408.

\(^{10}\) McCord, Joan, and Margaret Ensminger. "Pathways from aggressive childhood to criminality." meeting of the American Society of Criminology, Boston, MA. 1995.

\(^{12}\) Ibid 9

7) Poverty

Being raised in poverty has been found to increase the likelihood of involvement in crime and violence (Sampson and Lauritsen, 1994). Self-reported felony assault and robbery have been found to be twice as common among youth living in poverty as among middleclass youth (Elliott, Huizinga, and Menard, 1989). Low family income predicted self-reported teen violence and convictions for violent offenses in several studies (Farrington, 1989; Høgh and Wolf, 1983; Henry et al., 1996).

8) Substance Abuse

As stated previously, a prevalence of drugs and firearms in the community predicted greater variety in violent behaviors at age 18. Furthermore, high alcohol and drug use, drug dealing, and other drug-related activities are associated with a higher risk for youth gang violence.

9) Youth with Disabilities

Mental and emotional health problems, such as Attention Deficit Hyperactivity Disorder (A.D.H.D), have been associated with future gang and violent activity. While no data is available on specifically youth with mental disabilities, the American Community Survey holds data on youth with any disabilities, including mental and emotional disabilities.

10) Gang Affiliated Crime in Community

Gang-affiliated crime directly reflects the amount of gang activity within a neighborhood. While crime reporting rates of certain neighborhoods may be lower than others, this is a strong reflection of gang violence in a community.

22 Ibid 10.
23 Ibid 12.
24 Ibid 12.
11) Graffiti within the Community

Graffiti is a strong metric for the presence of a gang within a community. According to the Los Angeles Police Department:

“The purpose of gang graffiti is to glorify the gang. Graffiti is meant to create a sense of intimidation and may increase the sense of fear within a neighborhood. Gang members use graffiti to mark their territory or turf, declare their allegiance to the gang, advertise a gang’s status or power, and to challenge rivals. Graffiti is used to communicate messages between gangs using codes with common meaning.”

Calculations of Metrics, Data, and Sources

The overall rating for each neighborhood’s risk factor score comes from an equal combination of the eleven metrics from the US Department of Justice Office of Juvenile Justice and Delinquency Prevention (OJJDP). Those eleven metrics, the data behind each metric, and the source for each piece of data, can be found in Table 1. Below is an example of calculating a single metric to show how all components come together to give a neighborhood its overall risk factor score.

Example Metric – Presence of Illegal Firearms (or use of)

In the chart below, the OJJDP metric “Presence of Illegal Firearms (or use of)” is linked to the following information.

From left to right, the first block shows the metric of focus (Presence and Use of Illegal Firearms). The next set of blocks is the data used to measure this metric, and the final block is the source of the data, including any calculations done before measuring.

In this case, the data creating the “Presence of Illegal Firearms” metric is Possession of Weapons crimes and Armed Robbery Crimes. Both data blocks are sourced from San José Police Department crime reports from 2013 to October 2018.
Each data block’s value is calculated through the calculation noted in the source block. The value for any block of data which comes from crime reports is calculated via the number of crime reports divided by the population in the neighborhood. For “Possession of Illegal Firearms,” the number of possession of weapons crimes are counted for each neighborhood, and then divided by the population in each neighborhood. So the data would look like this:

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th># of "Possession of Illegal Firearms" Crimes</th>
<th>Population</th>
<th>Crimes per Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>1000</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>250</td>
<td>5000</td>
<td>0.05</td>
</tr>
<tr>
<td>C</td>
<td>300</td>
<td>2000</td>
<td>0.15</td>
</tr>
</tbody>
</table>

We do a similar process for Robbery crimes:

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th># of "Armed Robbery" Crimes</th>
<th>Population</th>
<th>Crimes per Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
<td>1000</td>
<td>0.04</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>5000</td>
<td>0.005</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>2000</td>
<td>0.01</td>
</tr>
</tbody>
</table>

By dividing the number of crimes by population, crime rates can be compared across neighborhoods of varying sizes. Calculating the crime rates for both crimes results in the following table:

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th>"Possession of Illegal Firearms" Crimes per population</th>
<th>"Armed Robbery" Crimes per population</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>B</td>
<td>0.05</td>
<td>0.005</td>
</tr>
<tr>
<td>C</td>
<td>0.15</td>
<td>0.01</td>
</tr>
</tbody>
</table>

These two data measurements are then combined to determine the overall metric score for “Presence or Use of Illegal Firearms” for each neighborhood. Adding the two crime rates together would imply that the two crimes are comparable, but they are on a different scale. In general, there are more illegal firearm charges than there are robbery charges, so the Armed Robbery crime rate has an unfairly lower
impact on the overall metric (notice how adding the two crime rates leads to numbers very close to the illegal firearms crime rate, but very different from the armed robbery crime rate).

Before combining the data blocks, they must be put on the same scale. The largest value of each data block (column) is 1, and the lowest number is 0. All other values will fall between 0 and 1. For the Illegal Firearms column, the max value is 0.15, and the minimum value is 0.05. Therefore, the Illegal Firearms score would look like the following:

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th>"Possession of Illegal Firearms" Crimes per population</th>
<th>"Possession of Illegal Firearms" Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0.15</td>
<td>1</td>
</tr>
</tbody>
</table>

Calculating all the values in between the minimum and maximum value (in this case, the score for neighborhood A), uses the following equation:

\[
\text{Neighborhood Score} = \frac{\text{Neighborhood value} - \text{Min value}}{\text{Max Value} - \text{Min Value}}
\]

For neighborhood A:

\[
\text{Neighborhood A's Illegal Firearm Score} = \frac{0.1 - 0.05}{0.15 - 0.05} = 0.5
\]

Formally, this process is called “Min-Max Scaling” and puts every data block onto a comparable scale between 0 and 1. After Min-Max Scaling both crime rates, the two scores can be added together to produce the final “Presence and Use of Illegal Firearms” metric score for each neighborhood.

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th>"Possession of Illegal Firearms" Score</th>
<th>"Armed Robbery" Score</th>
<th>"Presence and Use of Illegal Firearms" Metric Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0.142857143</td>
<td>1.142857143</td>
</tr>
</tbody>
</table>

With two exceptions, this is how the score for all metrics are determined. One exception is the “Substance Abuse” metric, which multiplies the “Narcotics” score (the score for all reported Narcotics
crimes in a neighborhood) by five before adding it to the other scores in the “Substance Abuse” metric. Other scores in the “Substance Abuse” category relate to single crime types, such as driving under the influence or giving drugs to minors. Meanwhile, “Narcotics” crimes encompass several types of crimes, including buying, selling, and possession of illegal substances. Because “Narcotics” is an umbrella term for many drug offenses, it is weighted more in the scoring than individual crime scores in the “Substance Abuse” category.

The other exception is that the Safe School Campus Initiative Incident Reports score is multiplied by 0.5 (cut in half) because most acts of school violence are not reported to Safe School Campus Initiative, so it is an incomplete data source.27

Combining Metrics to get Overall Risk Factor Score

The metric scores are on different scales. For example, “Presence and Use of Illegal Firearms” only has two data measurements, meaning that metric is on a scale from 0 to 2. Meanwhile “Child Maltreatment” has six data measurements, meaning that metric is on a scale from 0 to 6. To combine multiple metrics, the same Min-Max Scaling process is used as was used combining blocks of data within a metric. For example, take this table of three OJJDP metrics:

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th>"Presence and Use of Illegal Firearms" Metric Score</th>
<th>"Child Maltreatment" Metric Score</th>
<th>"Gang Affiliated Crime" Metric Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.5</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>1.142857143</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Min-Max scaling each metric will result in this final table:

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th>"Presence and Use of Illegal Firearms" MinMax Score</th>
<th>"Child Maltreatment" MinMax Score</th>
<th>"Gang Affiliated Crime" MinMax Score</th>
<th>Overall Neighborhood Risk Factor Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.75</td>
<td>0</td>
<td>1.75</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>0.761904762</td>
<td>1</td>
<td>1</td>
<td>2.761904762</td>
</tr>
</tbody>
</table>

The “Overall Neighborhood Risk Factor Score” is the sum of all metric scores, and the final score used to assess the overall risk level for each neighborhood. All eleven metrics (listed on the following page) are treated as equal risk factors for youth and gang violence. Equal weighting for all metrics may be useful for some, but may not be useful for others. To customize how much each metric matters, the interactive toggle site allows users to customize the metrics of interest, and how they are weighted.\footnote{https://albertgehami.shinyapps.io/Violence-Risk-Factors-Map/} With the risk scores determined, the youth and gang violence risk scores can be mapped for each neighborhood.

Metrics displayed on the map

The map shows not the actual overall Risk Factor Score, but the risk score decile of each neighborhood. In other words, 10% of neighborhoods fall into the 90% decile, meaning their overall Risk Factor Scores are above 90% of the scores of other neighborhoods. There will be another 10% of neighborhoods which fall into the 80% decile, and so on down to the 0% decile. We choose to display the decile on the map rather than the raw Risk Factor Scores because we do not intend for this map to be used for exact comparisons between neighborhoods, but rather for a general comparison to identify which neighborhoods clearly have more present risk factors than others.

Table 1 displays all US Department of Justice Office of Juvenile Justice and Delinquency Prevention (OJJDP) metrics used, followed by the data measurements (data blocks) used for each metric, and the source of each data measurement.

A Brief note on Yearly Data

Since the map offers an annual look at San José, we divide our data into yearly fractions. This means the 2018 map only uses crime data and other data from 2018. There are some complications and exceptions that are listed below:

1) American Community Survey Estimates end in 2017, so the demographic data is constant from 2017 to 2018.
2) Safe School Campus Initiative data is only available from 2016 – 2018. Because of this, the “School Violence and Low Graduation” metric will only include graduation rates for years before 2016.
3) SJ Clean Graffiti Request data is only available from 2016 – 2018. Because of this, the “Graffiti” metric will be 0 for all years prior to 2016.
4) Santa Clara County Public Health Department and Marijuana License Data is point-in-time data, and remains constant through the years. Santa Clara County only has released on edition of their
data publicly, with no dates attached to it. Only a small portion of the metrics rely on County Public Health data, and the map is almost the same without County data. However, it is useful to include for a more comprehensive picture of risk factors.

5) Graduation Rates are taken from the prior year. This means that the 2018 map uses graduation data from 2017, the 2017 map uses graduation data from 2016, and so on. This is done because 2018 graduation data is not yet available.
Table 1

<table>
<thead>
<tr>
<th>Data</th>
<th>Sources and Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crime flagged for gang investigations unit</td>
<td>Crime reports from San José Police Department. 2013 – October 2018. All crime rates are:</td>
</tr>
<tr>
<td></td>
<td># of crime reports</td>
</tr>
<tr>
<td></td>
<td>population in neighborhood</td>
</tr>
<tr>
<td>Child Abuse</td>
<td>Safe School Campus Initiative Incident Reports. July 2016 – June 2018. Number of Highest Concern (Level 1) Incidents for schools which enrollment boundaries are within the neighborhood.</td>
</tr>
<tr>
<td>Runaway Youth</td>
<td>High School Graduation Rates, 2012 – 2017. Overall graduation rate for 12th grade students enrolled in schools with enrollment boundaries that are within the neighborhood.</td>
</tr>
<tr>
<td>Child Neglect</td>
<td>(Uses prior year’s Graduation rates)</td>
</tr>
<tr>
<td>Domestic Violence</td>
<td>American Community Survey (ACS) 5-year Estimates. 2013 – 2016. All ACS metrics are:</td>
</tr>
<tr>
<td>Domestic Battery</td>
<td>Estimated count of demographic population in neighborhood</td>
</tr>
<tr>
<td>Domestic Armed Robbery</td>
<td></td>
</tr>
<tr>
<td>Sex abuse with youth victim (intercourse with minor)</td>
<td></td>
</tr>
<tr>
<td>Child Molestation</td>
<td>Alcohol and Tobacco Retailers per square mile: Santa Clara County Public Health Department. Small Neighborhood Profile. 2018</td>
</tr>
<tr>
<td>Aggravated Assault</td>
<td>Marijuana Retailers per square mile: Marijuana Business License Data. 2018. Calculated as:</td>
</tr>
<tr>
<td>Robbery</td>
<td># of marijuana retailers Area of Neighborhood (miles²)</td>
</tr>
<tr>
<td>Assault</td>
<td></td>
</tr>
<tr>
<td>Criminal Threats (including Hate Crimes)</td>
<td></td>
</tr>
<tr>
<td>Total Crime</td>
<td></td>
</tr>
<tr>
<td>People below Poverty Line (all)</td>
<td></td>
</tr>
<tr>
<td>Possession of Weapons</td>
<td></td>
</tr>
<tr>
<td>Armed Robbery</td>
<td></td>
</tr>
<tr>
<td>Safe School Campus Initiative Level 1 Incidents</td>
<td></td>
</tr>
<tr>
<td>% of 12th Grade Students That Fail to Graduate</td>
<td></td>
</tr>
<tr>
<td>Reported disabilities for youth under 18</td>
<td></td>
</tr>
<tr>
<td>Family Households below Poverty Line</td>
<td></td>
</tr>
<tr>
<td>Youth under 25 Living Below Poverty Line</td>
<td></td>
</tr>
<tr>
<td>Driving Under the Influence</td>
<td></td>
</tr>
<tr>
<td>Minor with Tobacco or Alcohol</td>
<td></td>
</tr>
<tr>
<td>All Narcotics Crimes</td>
<td></td>
</tr>
<tr>
<td>Alcohol retailers per square mile</td>
<td></td>
</tr>
<tr>
<td>Tobacco retailers per square mile</td>
<td></td>
</tr>
<tr>
<td>Marijuana retailers per square mile</td>
<td></td>
</tr>
<tr>
<td>SJ Clean Graffiti Reports (number of reports)</td>
<td>SJ Clean Graffiti Requests. July 2016 – June 2018. Number of reports is calculated as:</td>
</tr>
<tr>
<td></td>
<td># of reports</td>
</tr>
<tr>
<td></td>
<td>population in neighborhood</td>
</tr>
<tr>
<td>SJ Clean Graffiti Reports (total square feet of graffiti)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OJJDP Risk Factors (Metrics)

- Gang-related and Gang-motivated Crimes
- Child Maltreatment
- Developmental Trauma Exposure
- Exposure to Violence and Racial Prejudice
- Community Disorganization
- Presence of Illegal Firearms (or use of)
- School Violence and Low Graduation
- Youth with Disabilities
- Poverty
- Substance Abuse
- Graffiti
Scope of Data – Defining a “Neighborhood”

City-defined neighborhoods are not used for this map. Instead, all data is stored and displayed at the census tract level. The "Census Tract" is an area roughly equivalent to a neighborhood established by the Bureau of Census for analyzing populations. They generally encompass a population between 2,500 to 8,000 people. Some neighborhoods, as defined and labeled by the Santa Clara County department of Public Health, include multiple census tracts, and others only include one tract. In practice, some neighborhood communities may cross census tracts.

Here is a map of all census tracts in San José:

Every census tract has its own crime rate, poverty levels, and metrics. The calculations shown in the prior section are used to determine the overall Risk Factor Score for each census tract for each year between 2013 and 2018.

Figure 4: Map of all census tracts in San José
No individual level data is used. This means it is impossible to identify any individual, family, or group of individuals through this data. All data is tied to the geographic area and nothing else. This accomplishes our goal of better resource allocation without compromising our citizens’ privacy.

Predicting Future Risk Factor Scores

The predictive models use data from 2018 and before to predict the overall risk factor scores for each neighborhood for 2019, 2020, and 2021. The models predict a neighborhood’s future overall risk factor scores using the neighborhood’s current eleven metric scores, its overall risk score, and the average of the eleven metric scores for the neighborhood’s bordering neighborhoods, and the average of their overall risk score.

To illustrate this model, assume the overall risk factor score is not determined by 11 metrics, but instead by 2 metrics: Substance Abuse and Poverty. Furthermore, assume we are trying to predict the overall risk factor score for neighborhood A, with neighborhoods B and C bordering (or sharing a border) with A.

Based on this model, the values used to predict neighborhood A’s future overall risk score would be:

1) A’s Overall Risk Factor Score = $0.38 + 0.45 = 0.83$
2) A’s Substance Abuse metric = 0.38
3) A’s Poverty metric = 0.45
4) A’s neighbor average Overall Risk Factor Score =
 \[
 \frac{B’s \text{ Overall score} + C’s \text{ Overall score}}{\# \text{ of bordering neighborhoods A has}} = \frac{(0.50 + 0.80) + (0.10 + 0.20)}{2} = 0.80
 \]
5) A’s neighbor average Substance Abuse metric =
 \[
 \frac{B’s \text{ Substance Abuse score} + C’s \text{ Substance Abuse score}}{\# \text{ of bordering neighborhoods A has}} = \frac{0.50 + 0.10}{2} = 0.30
 \]
6) A’s neighbor average Poverty metric =

Figure 5: Example of Census Tract and neighboring tracts
Under this simplified model, these six values would be used to predict A’s overall risk factor score 1 year, 2 years, and 3 years into the future. In the full model, 24 values (the 11 metrics + one overall score from the neighborhood and another 11 + one overall score which average its bordering neighborhood’s metrics) are used to predict a neighborhood’s overall risk score 1, 2, and 3 years into the future.

The model used is referred to as a “Random Forest” algorithm, implemented in R. A random forest algorithm uses many decision tree algorithms, and has each tree offer a prediction. The predictions are then averaged across all trees in the forest, creating the final predicted value. A visual representation of the random forest model is shown below (Figure 6). For a deeper understanding of decision trees and a random forest model, check footnote 26. To see how these algorithms are implemented in our work, check our GitHub files “Building the 1 2 and 3 year prediction models.R” and “Predicting the future.R.”

Random Forest Model – A Visual Representation

![Random Forest Model Diagram]

Predicted Overall Risk Factor Score = \(\frac{a_1 + a_2 + \cdots + a_n}{n} \)

Figure 6: A Visual Representation of the Random Forest Model used to predict the Overall Risk Factor Scores.

29 For more information on Random Forest algorithms and Decision trees, see https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d for a written discussion, https://www.youtube.com/watch?v=9TiezQ7Gb3M for a video, or http://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing/ for a more detailed overview.

30 https://github.com/gehami/Youth-Needs-Map
Prediction Accuracy

By predicting historical data (ie. Predicting the risk factor scores of 2017 using the data of 2016), the model’s accuracy can be assessed. In general, the model is 99% accurate in predicting 1, 2, and 3 years in advance. For example, below is a comparison of the actual 2018 map, and the predicted 2018 map, using 2017 data (Figure 7 and Figure 8).

Figure 7 (Left): Actual 2018 Risk Factor Map (Left). Council Districts mapped in black for reference.
Figure 8 (Right): Predicted 2018 Risk Factor Map Using 2017 Data (Right). Council Districts mapped in black for reference.

Such an accurate prediction is due in large part to the low variation year-over-year. The demographics, crime rates, and other data remains relatively constant each year. To illustrate this point, below is a comparison of the risk factor maps from 2013 to 2018 (Figure 9). The consistency over time confirms a common sentiment among City employees: The areas that need services today, are the areas that needed services a decade ago.
Figure 9: Map of Neighborhood Risk Factor Score (the Risk Factor Map) over time from 2013 - 2018. Council Districts mapped in black for reference.
Additional Data, Limitations, and Future Work

The Violence Risk Factors Map is a prototype for the City, its service providers, and the public to understand the risk factors for youth and gang violence within each neighborhood. The Map is subject to evolve and develop as the City improves its data collection and analyses.

Additional Data

There are a number additional data sources that could be included for a more holistic look at the city. These include but are not limited to:

1) Violent incidents at schools reported by the school districts. This would provide a complete image of what Safe School Campus Initiative’s school violence data approaches.
2) Data specifically on the mental health of youth in each neighborhood.
3) Truancy, and other data indicating engagement at school.
4) Graffiti data that specified which graffiti was gang-affiliated.
5) Data on crime committed specifically by youth.
6) Crime victimization rates (not just police reports). This would provide another look at where crime happens in San José, rather than where crime is reported to happen.
7) County hospital rates of violent incidents, gunshot victims, child maltreatment, etc.
8) School-based student health surveys
9) Presence of protective/buffer factors within the community
10) Marijuana, Alcohol, and Tobacco license data by year rather than point-in-time.

Despite lacking this information, most metrics are related to one another. Throughout the development process of this map, metrics have been added, removed, and edited, and the picture of the map has remained almost constant. In other words, while additional data would be useful, it is likely that data would point to the same neighborhoods as having the most present risk factors for youth and gang violence.

Limitations

A few major limitations to the map:

1) Data that goes unreported cannot be included in the map. For example, if a crime occurs in a community without a police officer filing a report, then the map will not be able to include that crime.
2) Human error. Most of the data is reported by people manually filling out reports, so it is subject to any reporting mistakes.
Next Steps

One of the next steps in this work will be to identify what assets are available in each neighborhood, and how the City can leverage its services to provide targeted support to each neighborhood. Assets can reduce the risk of youth and gang violence within a community by providing protective and buffering factors from other risk factors. For example, identifying where services currently take place, adding locations of child care centers, non-profit services, faith-based services and locations (churches, synagogues, temples, mosques, etc.), and other community assets would identify where the areas of opportunity are, even when a community has high risk factors present. Solving such a large, complex problem as youth violence will require a community-wide, multi-sectoral approach. Having both the risks and protective factors on a single map will help inform the resource allocation and strategy that policy-makers can take to continue to make progress.

Building On This Work

All files used to create this map, with the exception of some raw data, are available on GitHub. If you are interested in tweaking the map itself, or any aspect of the map, you can do so by downloading (or pulling) the entire GitHub repo and editing it on your personal computer. The code is in the public domain, and as such can be used for any purpose, just make sure to cite our work in your code. Please use the following citation:

A BibTeX entry for LaTeX users is

@Manual{,
 title = {Youth Risk Map: Identifying the Neighborhood Risk Factors for Youth and Gang Violence in San José},
 author = {Albert Gehami, San José Parks, Recreation & Neighborhood Services},
 year = {2019},
 url = {https://github.com/gehami/Youth-Needs-Map},
}